China OEM OEM Professional Finishing Alloy Steel S45c Carbon Steel Surface Chrome Treatment Forged CZPT Steel Spline/Roller Shaft

Product Description

Product Description


Carbon steel,Alloy steel



Melting process


Production process

Forging+heat treatment+rough machining+QT+finish machining


Open die forging (product range: Max length 16000mm; Max weight 35 Mt)


Carburizing and phosphating

Heat Treatment

Normalizing, Tempering, Annealing, Q + T (Quenching and Tempering)


Pre-machining, Finish machining

Surface Finishing

Sand blasting, Coating, Painting

Forging ratio


Applicalbe standard


Executive standard


Certification authorities


Delivery terms

Rough machining(N+T);finish machining(Q+T),nitriding quenching


Samples are sent by express
Large quantity products delivered to customer by sea
or according to your request

Produce Equipment

Friction Screw Press Series, CNC Lathe, Machining Center
(Vertical Spindles), CNC Milling Machine, Bench Drilling
Machine, Heat Treatment Equipments and so on.

Forging equipment

6000T open die hydropress

Surface treatment

Heat treatment, Polishing, shot blasting,
Painting, Electro-plating, Chemical Plating,

Test machine

spectrograph,ut device,tensile and compact test machine,metalloscope,outside micrometer,bore dial indicator,trilinear coordinatre
measuring machine,hardness test machine,metallurgical analysis, tensile strength tester, hardness
tester, altimeter, scale micrometer, pressure tester, etc.


Application series

Representative steel type


Petroleum machinery series

AISI4150,AISI4140,AISI4130, 30CrMo,4145H

Valve body, valve block, drill pipe, drill collar

Tool mold series

1.2714,5CrMnMo,5CrNiMoV, 1.2738,1.2311,1.2312

Die casting mold, forging mold,

plastic mold

Bearing series


Bearing ring, rolling bearing, piston rod

Marine series

4140,42CrMo,SCM440, 709M40

Marine accessories

Car series

SAE8620,20CrNiMo, SNCM220


duty transmission series

40CrNiMo,SNCM439, SAE4340,EN24

Port transmission parts,
helicopter rotor shaft, turbine shaft

Mining machinery series


Mining bit, carburizing and crushing machinery

Wind power gear series

18CrNiMo7-6,17CrNiMo6, 1.6582,1.6587,SAE8620

Meet the design life of more than 20 years

Wind power spindle series


Meet the design life of more than 20 years

Nitriding series

20MnCr5,38CrMoAl, 31CrMoV9

Gear, injection molding machine screw / barrel,precision components

Pressure vessel series


Boiler, petrochemical hydrogenation vessel accessories

Metallurgical roll series


Steel rolling roll


Company advantage

MEIDE designs, develops, produces and delivers based on your drawings, samples or just an idea!
* Provide technical process analysis, development and manufacturing integration of resources according to customer requirements, to provide different processes of OEM castings and forgings and CNC machining parts.
* We supply both machined and non-machined castings and forgings to various industries, starting with OEM suppliers.
* We are both a manufacturer and a trading company, breaking the limits of a single factory
* We have 100 strategic partners for production of different technologies
* Professional team including translators, engineers, inspectors and customer service * has developed more than 10,000 products to date
* The OEM division is the most promising member of MEIDE and will receive the strongest support from the whole group * Any OEM inquiry will be set up as a project and will be considered a focus within the Group
* 20 years of independent development and design capabilities
* 20 senior engineers
*Auto CAD/Pro Engineer /Solid Works
* Our forging processes are open die forging, precision forging, die forging
* Dual control of standard and OEM products
* Our factory has a variety of equipment, such as lathes, CNC, drilling machine, milling machine, boring machine, planer.
* Delivery time and packaging can be completely controlled according to customer requirements.

Forging Production Flow

1. Enquiry With Drawing In Details
2. Confirm Steel Material, Chemical Compositions, Mechanical Properties, Tolerances
3. Confirm Payment Terms, Order Materials or Check Material in Stock
4. Check Material Chemical Compositions, Material Weight, Dimensions
5. Cut Materials, Record Weight, Pre-Heating For Forging
6. Forging Ratios, Heat Treatment After Forging, Dimension Check
7. Rough Machining, UT Test, Heat Treatment
8. Fine Machining, UT & PT Test, Dimensions Inspection, Mechanical Properties Test
9. Customer Inspection at Site, Packing, Delivery Arrangement
10. Balance Payment Confirmation, Dispatch Forgings or Casting
11. Bill of Loading Confirmation, MTC Dispatch, Customs Clearances
12. Order Accomplished


Shipment Terms

1) 0-100kg: express & air freight priority

2) >100kg: sea freight priority

3) As per customized specifications

All parts are custom made according to customer’s drawings or samples, no stock.


Q1: Are you a trading company or a manufacturer?
A: We are an industrial and trading company with our own iron foundry and many outsourcing partners.

Q2: What is your lead time?
A: Approximately 15-35 days from the date of order.

Q3: Do you provide samples? Is it free or extra?
A: We can provide samples. If it’s not too much, it’s free. However, if we need to make the mold first, we need to charge 50% of the mold cost.

Q4: What are your payment terms?
1) Mold fee: 50% in advance, 50% after sample approval
2) Goods: 30% down payment, 70% should be received before delivery.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Application: Agricultural Machinery Parts
Material: Carbon Steel Stainless Steel Copper Aluminum Titan
Heat Treatment: Tempering
US$ 10/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

spline shaft

How do spline shafts handle variations in torque and rotational force?

Spline shafts are designed to handle variations in torque and rotational force in mechanical systems. Here’s a detailed explanation:

1. Interlocking Splines:

Spline shafts have a series of interlocking splines along their length. These splines engage with corresponding splines on the mating component, such as gears or couplings. The interlocking design ensures a secure and robust connection, capable of transmitting torque and rotational force.

2. Load Distribution:

When torque is applied to a spline shaft, the load is distributed across the entire engagement surface of the splines. This helps to minimize stress concentrations and prevents localized wear or failure. The load distribution capability of spline shafts allows them to handle variations in torque and rotational force effectively.

3. Material Selection:

Spline shafts are typically made from materials with high strength and durability, such as alloy steels. The material selection is crucial in handling variations in torque and rotational force. It ensures that the spline shaft can withstand the applied loads without deformation or failure.

4. Spline Profile:

The design of the spline profile also contributes to the handling of torque variations. The spline profile determines the contact area and the distribution of forces along the splines. By optimizing the spline profile, manufacturers can enhance the load-carrying capacity and improve the ability of the spline shaft to handle variations in torque.

5. Surface Finish and Lubrication:

Proper surface finish and lubrication play a crucial role in the performance of spline shafts. A smooth surface finish reduces friction and wear, while suitable lubrication minimizes heat generation and ensures smooth operation. These factors help in handling variations in torque and rotational force by reducing the impact of friction and wear on the spline engagement.

6. Design Considerations:

Engineers take several design considerations into account to ensure spline shafts can handle variations in torque and rotational force. These considerations include appropriate spline dimensions, tooth profile geometry, spline fit tolerance, and the selection of mating components. By carefully designing the spline shaft and its mating components, engineers can optimize the system’s performance and reliability.

7. Overload Protection:

In some applications, spline shafts may be equipped with overload protection mechanisms. These mechanisms, such as shear pins or torque limiters, are designed to disconnect the drive temporarily or slip when the torque exceeds a certain threshold. This protects the spline shaft and other components from damage due to excessive torque.

Overall, spline shafts handle variations in torque and rotational force through their interlocking splines, load distribution capability, appropriate material selection, optimized spline profiles, surface finish, lubrication, design considerations, and, in some cases, overload protection mechanisms. These features ensure efficient torque transmission and enable spline shafts to withstand the demands of various mechanical systems.

spline shaft

How do spline shafts contribute to precise and consistent rotation?

Spline shafts play a crucial role in achieving precise and consistent rotation in mechanical systems. Here’s how spline shafts contribute to these characteristics:

1. Interlocking Design:

Spline shafts feature a series of ridges or teeth, known as splines, that interlock with corresponding grooves or slots in mating components. This interlocking design ensures a positive connection between the shaft and the mating part, allowing for precise and consistent rotation. The engagement between the splines provides resistance to axial and radial movement, minimizing play or backlash that can introduce inaccuracies in rotation.

2. Load Distribution:

The interlocking engagement of spline shafts allows for effective load distribution along the length of the shaft. This helps distribute the applied torque evenly, reducing stress concentrations and minimizing the risk of localized deformation or failure. By distributing the load, spline shafts contribute to consistent rotation and prevent excessive wear on specific areas of the shaft or the mating components.

3. Torque Transmission:

Spline shafts are specifically designed to transmit torque efficiently from one component to another. The close fit between the splines ensures a high torque-carrying capacity, enabling the shaft to transfer rotational force without significant power loss. This efficient torque transmission contributes to precise and consistent rotation, allowing for accurate positioning and motion control in various applications.

4. Rigidity and Stiffness:

Spline shafts are typically constructed from materials with high rigidity and stiffness, such as steel or alloy. This inherent rigidity helps maintain the dimensional integrity of the shaft and minimizes deflection or bending under load. By providing a stable and stiff rotational axis, spline shafts contribute to precise and consistent rotation, particularly in applications that require tight tolerances or high-speed operation.

5. Alignment and Centering:

The interlocking nature of spline shafts aids in the alignment and centering of rotating components. The splines ensure proper positioning and orientation of the shaft relative to the mating part, facilitating concentric rotation. This alignment helps prevent wobbling, vibrations, and eccentricity, which can adversely affect rotation accuracy and consistency.

6. Lubrication and Wear Reduction:

Proper lubrication of spline shafts is essential for maintaining precise and consistent rotation. Lubricants reduce friction between the mating surfaces, minimizing wear and preventing stick-slip phenomena that can cause irregular rotation. The use of lubrication also helps dissipate heat generated during operation, ensuring optimal performance and longevity of the spline shaft.

By incorporating interlocking design, load distribution, efficient torque transmission, rigidity, alignment, and lubrication, spline shafts contribute to precise and consistent rotation in mechanical systems. Their reliable and accurate rotational characteristics make them suitable for a wide range of applications, from automotive and aerospace to machinery and robotics.

spline shaft

In which industries are spline shafts typically used?

Spline shafts find applications in a wide range of industries where torque transmission, relative movement, and load distribution are critical. Here’s a detailed explanation:

1. Automotive Industry:

The automotive industry extensively uses spline shafts in various components and systems. They are found in transmissions, drivelines, steering systems, differentials, and axle assemblies. Spline shafts enable the transmission of torque, accommodate relative movement, and ensure efficient power transfer in vehicles.

2. Aerospace and Defense Industry:

Spline shafts are essential in the aerospace and defense industry. They are used in aircraft landing gear systems, actuation mechanisms, missile guidance systems, engine components, and rotor assemblies. The aerospace and defense sector relies on spline shafts for precise torque transfer, relative movement accommodation, and critical control mechanisms.

3. Industrial Machinery and Equipment:

Spline shafts are widely employed in industrial machinery and equipment. They are used in gearboxes, machine tools, pumps, compressors, conveyors, printing machinery, and packaging equipment. Spline shafts enable torque transmission, accommodate misalignments and vibrations, and ensure accurate movement and synchronization of machine components.

4. Agriculture and Farming:

The agriculture and farming industry extensively uses spline shafts in equipment such as tractors, harvesters, and agricultural implements. Spline shafts are found in power take-off (PTO) units, transmission systems, hydraulic mechanisms, and steering systems. They enable torque transfer, accommodate relative movement, and provide flexibility in agricultural machinery.

5. Construction and Mining:

In the construction and mining industries, spline shafts are used in equipment such as excavators, loaders, bulldozers, and drilling rigs. They are found in hydraulic systems, power transmission systems, and articulated mechanisms. Spline shafts facilitate torque transmission, accommodate misalignments, and enable efficient power transfer in heavy-duty machinery.

6. Marine and Offshore:

Spline shafts have applications in the marine and offshore industry. They are used in propulsion systems, thrusters, rudders, winches, and marine pumps. Spline shafts enable torque transmission in marine vessels and offshore equipment, accommodating axial and radial movement, and ensuring reliable power transfer.

7. Energy and Power Generation:

Spline shafts are utilized in the energy and power generation sector. They are found in turbines, generators, compressors, and other rotating equipment. Spline shafts enable torque transmission and accommodate relative movement in power generation systems, ensuring efficient and reliable operation.

8. Rail and Transportation:

Spline shafts are employed in the rail and transportation industry. They are found in locomotives, railcar systems, and suspension mechanisms. Spline shafts enable torque transfer, accommodate movement and vibrations, and ensure precise control in rail and transportation applications.

These are just a few examples of the industries where spline shafts are typically used. Their versatility, torque transmission capabilities, and ability to accommodate relative movement make them vital components in various sectors that rely on efficient power transfer, flexibility, and precise control.

China OEM OEM Professional Finishing Alloy Steel S45c Carbon Steel Surface Chrome Treatment Forged CZPT Steel Spline/Roller Shaft  China OEM OEM Professional Finishing Alloy Steel S45c Carbon Steel Surface Chrome Treatment Forged CZPT Steel Spline/Roller Shaft
editor by CX 2024-04-02